Search results
Results From The WOW.Com Content Network
Diagram of modern conception of the Counter-Earth, a planet in the same orbit as the Earth, but 180° out of phase. Philolaus's ideas were all eventually superseded by the modern realization that a spherical Earth rotating on its own axis was one of several spherical planets following the laws of gravity and revolving around a much larger Sun ...
The orbit of a planet is an ellipse with the Sun at one of the two foci. A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.
Another important development that allowed Kepler to establish his celestial-harmonic relationships was the abandonment of the Pythagorean tuning as the basis for musical consonance and the adoption of geometrically supported musical ratios; this would eventually be what allowed Kepler to relate musical consonance and the angular velocities of ...
In Mercury's case, the planet completes three rotations for every two revolutions around the Sun, a 3:2 spin–orbit resonance. In the special case where an orbit is nearly circular and the body's rotation axis is not significantly tilted, such as the Moon, tidal locking results in the same hemisphere of the revolving object constantly facing ...
The first panel (left) of this artist's concept depicts how Uranus' protective magnetosphere behaved prior to Voyager 2's flyby. The second panel shows that unusual solar weather was happening at ...
Another common form of resonance in the Solar System is spin–orbit resonance, where the rotation period (the time it takes the planet or moon to rotate once about its axis) has a simple numerical relationship with its orbital period. An example is the Moon, which is in a 1:1 spin–orbit resonance that keeps its far side away from
All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.
The blue planet feels only an inverse-square force and moves on an ellipse (k = 1). The green planet moves angularly three times as fast as the blue planet (k = 3); it completes three orbits for every orbit of the blue planet. The red planet illustrates purely radial motion with no angular motion (k = 0).