When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    For exchanging the extracted models—in particular for use in predictive analytics—the key standard is the Predictive Model Markup Language (PMML), which is an XML-based language developed by the Data Mining Group (DMG) and supported as exchange format by many data mining applications. As the name suggests, it only covers prediction models ...

  3. Predictive Model Markup Language - Wikipedia

    en.wikipedia.org/wiki/Predictive_Model_Markup...

    Mining Schema: a list of all fields used in the model. This can be a subset of the fields as defined in the data dictionary. It contains specific information about each field, such as: Name (attribute name): must refer to a field in the data dictionary; Usage type (attribute usageType): defines the way a field is to be used in the model.

  4. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...

  5. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).

  6. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]

  7. Affinity analysis - Wikipedia

    en.wikipedia.org/wiki/Affinity_analysis

    There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem. [1] The support metric in the association rule learning algorithm is defined as the frequency of the antecedent or consequent appearing together in a data set ...

  8. Machine learning in bioinformatics - Wikipedia

    en.wikipedia.org/wiki/Machine_learning_in...

    Deep learning applications have been used for regulatory genomics and cellular imaging. [33] Other applications include medical image classification, genomic sequence analysis, as well as protein structure classification and prediction. [34] Deep learning has been applied to regulatory genomics, variant calling and pathogenicity scores. [35]

  9. SPSS Modeler - Wikipedia

    en.wikipedia.org/wiki/SPSS_Modeler

    IBM SPSS Modeler is a data mining and text analytics software application from IBM.It is used to build predictive models and conduct other analytic tasks. It has a visual interface which allows users to leverage statistical and data mining algorithms without programming.