Search results
Results From The WOW.Com Content Network
The max-sum in the greedy partition is more than 4 (since the total sum in both partitions is the same, and it is at least 4m). If sum(P i)≥3 for some greedy bin P i, then P i is not dominated by any optimal bin Q j. Proof: if P i is dominated by Q j, then we can construct a smaller counterexample by decreasing m to m-1 and removing the items ...
The matching pursuit is an example of a greedy algorithm applied on signal approximation. A greedy algorithm finds the optimal solution to Malfatti's problem of finding three disjoint circles within a given triangle that maximize the total area of the circles; it is conjectured that the same greedy algorithm is optimal for any number of circles.
List scheduling is a greedy algorithm for Identical-machines scheduling.The input to this algorithm is a list of jobs that should be executed on a set of m machines. The list is ordered in a fixed order, which can be determined e.g. by the priority of executing the jobs, or by their order of arrival.
In computer science, greedy number partitioning is a class of greedy algorithms for multiway number partitioning. The input to the algorithm is a set S of numbers, and a parameter k. The required output is a partition of S into k subsets, such that the sums in the subsets are as nearly equal as possible. Greedy algorithms process the numbers ...
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph.If the graph is connected, it finds a minimum spanning tree.It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle. [2]
For example, the subset {A,C} is compatible, as is the subset {B}; but neither {A,B} nor {B,C} are compatible subsets, because the corresponding intervals within each subset overlap. The interval scheduling maximization problem (ISMP) is to find a largest compatible set, i.e., a set of non-overlapping intervals of maximum size.
Greedy number partitioning (also called the Largest Processing Time in the scheduling literature) loops over the numbers, and puts each number in the set whose current sum is smallest. If the numbers are not sorted, then the runtime is O ( n ) {\displaystyle O(n)} and the approximation ratio is at most 2 − 1 / k {\displaystyle 2-1/k} .
In computer science, Prim's algorithm is a greedy algorithm that finds a minimum spanning tree for a weighted undirected graph. This means it finds a subset of the edges that forms a tree that includes every vertex, where the total weight of all the edges in the tree is minimized. The algorithm operates by building this tree one vertex at a ...