When.com Web Search

  1. Ad

    related to: why do planets orbit elliptical machines in motion different

Search results

  1. Results From The WOW.Com Content Network
  2. Elliptic orbit - Wikipedia

    en.wikipedia.org/wiki/Elliptic_orbit

    In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit).

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit. The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The ...

  4. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Figure 4: All three planets share the same radial motion (cyan circle) but move at different angular speeds. The blue planet feels only an inverse-square force and moves on an ellipse (k = 1). The green planet moves angularly three times as fast as the blue planet (k = 3); it completes three orbits for every orbit of the blue planet.

  5. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    From a circular orbit, thrust applied in a direction opposite to the satellite's motion changes the orbit to an elliptical one; the satellite will descend and reach the lowest orbital point (the periapse) at 180 degrees away from the firing point; then it will ascend back. The period of the resultant orbit will be less than that of the original ...

  6. Deferent and epicycle - Wikipedia

    en.wikipedia.org/wiki/Deferent_and_epicycle

    What was needed was Kepler's elliptical-orbit theory, not published until 1609 and 1619. Copernicus' work provided explanations for phenomena like retrograde motion, but really did not prove that the planets actually orbited the Sun. The deferent (O) is offset from the Earth (T). P is the center of the epicycle of the Sun S.

  7. De motu corporum in gyrum - Wikipedia

    en.wikipedia.org/wiki/De_motu_corporum_in_gyrum

    (Translation: 'The major planets orbit, therefore, in ellipses having a focus at the center of the Sun, and with their radii (vectores) drawn to the Sun describe areas proportional to the times, altogether (Latin: 'omnino') as Kepler supposed.') (This conclusion is reached after taking as initial fact the observed proportionality between square ...

  8. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line.

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    Figure 1. Typical elliptical path of a smaller mass m orbiting a much larger mass M. The larger mass is also moving on an elliptical orbit, but it is too small to be seen because M is much greater than m. The ends of the diameter indicate the apsides, the points of closest and farthest distance.