Search results
Results From The WOW.Com Content Network
This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.
In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...
In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...
Python. Pymetalog [41] closely mirrors the R package. Metalogistic [42] takes advantage of the SciPy platform. MakeDistribution.com [43] facilitates experimentation with metalogs parameterized by several CDF data points. The SPT metalog calculator, [44] metalog calculator [45] and ELD metalog calculator [46] are online versions of the Excel ...
Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).
Tables of the chi-squared cumulative distribution function are widely available and the function is included in many spreadsheets and all statistical packages. Letting z ≡ x / k {\displaystyle z\equiv x/k} , Chernoff bounds on the lower and upper tails of the CDF may be obtained. [ 11 ]
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable.In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile.