When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = ⁡ (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.

  3. CDF-based nonparametric confidence interval - Wikipedia

    en.wikipedia.org/wiki/CDF-based_nonparametric...

    In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...

  4. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...

  5. Metalog distribution - Wikipedia

    en.wikipedia.org/wiki/Metalog_distribution

    Python. Pymetalog [41] closely mirrors the R package. Metalogistic [42] takes advantage of the SciPy platform. MakeDistribution.com [43] facilitates experimentation with metalogs parameterized by several CDF data points. The SPT metalog calculator, [44] metalog calculator [45] and ELD metalog calculator [46] are online versions of the Excel ...

  6. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    Diagram showing the cumulative distribution function for the normal distribution with mean (μ) 0 and variance (σ 2) 1. These numerical values "68%, 95%, 99.7%" come from the cumulative distribution function of the normal distribution. The prediction interval for any standard score z corresponds numerically to (1 − (1 − Φ μ,σ 2 (z)) · 2).

  7. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Tables of the chi-squared cumulative distribution function are widely available and the function is included in many spreadsheets and all statistical packages. Letting z ≡ x / k {\displaystyle z\equiv x/k} , Chernoff bounds on the lower and upper tails of the CDF may be obtained. [ 11 ]

  8. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  9. Lévy distribution - Wikipedia

    en.wikipedia.org/wiki/Lévy_distribution

    In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable.In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile.