When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. CDF-based nonparametric confidence interval - Wikipedia

    en.wikipedia.org/wiki/CDF-based_nonparametric...

    In statistics, cumulative distribution function (CDF)-based nonparametric confidence intervals are a general class of confidence intervals around statistical functionals of a distribution. To calculate these confidence intervals, all that is required is an independently and identically distributed (iid) sample from the distribution and known ...

  3. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    This is called the complementary cumulative distribution function (ccdf) or simply the tail distribution or exceedance, and is defined as ¯ = ⁡ (>) = (). This has applications in statistical hypothesis testing , for example, because the one-sided p-value is the probability of observing a test statistic at least as extreme as the one observed.

  4. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In statistics, an empirical distribution function (commonly also called an empirical cumulative distribution function, eCDF) is the distribution function associated with the empirical measure of a sample. [1] This cumulative distribution function is a step function that jumps up by 1/n at each of the n data points. Its value at any specified ...

  5. Kolmogorov–Smirnov test - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov–Smirnov_test

    Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.

  6. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  7. Quantile function - Wikipedia

    en.wikipedia.org/wiki/Quantile_function

    The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values. The quantile function does the opposite: it gives the q values as a function of the p values. Note that the portion of F(x) in red is a horizontal line segment.

  8. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    A real-valued discrete random variable can equivalently be defined as a random variable whose cumulative distribution function increases only by jump discontinuities—that is, its cdf increases only where it "jumps" to a higher value, and is constant in intervals without jumps. The points where jumps occur are precisely the values which the ...

  9. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    The Q-function is well tabulated and can be computed directly in most of the mathematical software packages such as R and those available in Python, MATLAB and Mathematica. Some values of the Q -function are given below for reference.