When.com Web Search

  1. Ad

    related to: strain hardening equation chemistry worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. Strain hardening exponent - Wikipedia

    en.wikipedia.org/wiki/Strain_hardening_exponent

    The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...

  3. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.

  4. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.

  5. Forming limit diagram - Wikipedia

    en.wikipedia.org/wiki/Forming_limit_diagram

    Thus the basic influence parameters for the forming limits are, the strain hardening exponent, n, the initial sheet thickness, t 0 and the strain rate hardening coefficient, m. The lankford coefficient, r, which defines the plastic anisotropy of the material, has two effects on the forming limit curve. On the left side there is no influence ...

  6. Meyer's law - Wikipedia

    en.wikipedia.org/wiki/Meyer's_law

    The index n usually lies between the values of 2, for fully strain hardened materials, and 2.5, for fully annealed materials. It is roughly related to the strain hardening coefficient in the equation for the true stress-true strain curve by adding 2. [1] Note, however, that below approximately d = 0.5 mm (0.020 in) the value of n can surpass 3.

  7. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    At this point, the strengthening mechanism changes from dislocation-dominated strain hardening to growth softening and grain rotation. Typically, the inverse Hall-Petch effect will happens at grain size ranging from 10 nm to 30 nm and makes it hard for nanocrystalline materials to achieve a high strength.

  8. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture). During strain hardening the material becomes stronger through the movement of atomic dislocations. The necking phase is indicated by a reduction in cross-sectional area of the specimen.

  9. Hardening (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Hardening_(metallurgy)

    Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.