Ad
related to: strain hardening equation chemistry worksheetstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
The strain hardening exponent (also called the strain hardening index), usually denoted , is a measured parameter that quantifies the ability of a material to become stronger due to strain hardening. Strain hardening (work hardening) is the process by which a material's load-bearing capacity increases during plastic (permanent) strain , or ...
Work hardening, also known as strain hardening, is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation. This characteristic is what sets ductile materials apart from brittle materials. [1] Work hardening may be desirable, undesirable, or inconsequential, depending on the application.
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.
Thus the basic influence parameters for the forming limits are, the strain hardening exponent, n, the initial sheet thickness, t 0 and the strain rate hardening coefficient, m. The lankford coefficient, r, which defines the plastic anisotropy of the material, has two effects on the forming limit curve. On the left side there is no influence ...
The index n usually lies between the values of 2, for fully strain hardened materials, and 2.5, for fully annealed materials. It is roughly related to the strain hardening coefficient in the equation for the true stress-true strain curve by adding 2. [1] Note, however, that below approximately d = 0.5 mm (0.020 in) the value of n can surpass 3.
At this point, the strengthening mechanism changes from dislocation-dominated strain hardening to growth softening and grain rotation. Typically, the inverse Hall-Petch effect will happens at grain size ranging from 10 nm to 30 nm and makes it hard for nanocrystalline materials to achieve a high strength.
Under tensile stress, plastic deformation is characterized by a strain hardening region and a necking region and finally, fracture (also called rupture). During strain hardening the material becomes stronger through the movement of atomic dislocations. The necking phase is indicated by a reduction in cross-sectional area of the specimen.
Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.