Search results
Results From The WOW.Com Content Network
The cathode-ray tube by which J. J. Thomson demonstrated that cathode rays could be deflected by a magnetic field, and that their negative charge was not a separate phenomenon While supporters of the aetherial theory accepted the possibility that negatively charged particles are produced in Crookes tubes , [ citation needed ] they believed that ...
The Thomson problem is a natural consequence of J. J. Thomson's plum pudding model in the absence of its uniform positive background charge. [ 12 ] "No fact discovered about the atom can be trivial, nor fail to accelerate the progress of physical science, for the greater part of natural philosophy is the outcome of the structure and mechanism ...
Thomson's model marks the moment when the development of atomic theory passed from chemists to physicists. While atomic theory was widely accepted by chemists by the end of the 19th century, physicists remained skeptical because the atomic model lacked any properties which concerned their field, such as electric charge, magnetic moment, volume, or absolute mass.
In 1898, J. J. Thomson found that the positive charge of a hydrogen ion was equal to the negative charge of a single electron. [ 70 ] In an April 1911 paper concerning his studies on alpha particle scattering, Ernest Rutherford estimated that the charge of an atomic nucleus, expressed as a multiplier of hydrogen's nuclear charge ( q e ), is ...
The debate was resolved in 1897 when J. J. Thomson measured the mass of cathode rays, showing they were made of particles, but were around 1800 times lighter than the lightest atom, hydrogen. Therefore, they were not atoms, but a new particle, the first subatomic particle to be discovered, which he originally called " corpuscle " but was later ...
J. J. Thomson begins his study of positive rays. 1906 Thomson is awarded the Nobel Prize in Physics "in recognition of the great merits of his theoretical and experimental investigations on the conduction of electricity by gases" 1913 Thomson is able to separate particles of different mass-to-charge ratios.
In 1897, J. J. Thomson succeeded in measuring the mass-to-charge ratio of cathode rays, showing that they consisted of negatively charged particles smaller than atoms, the first "subatomic particles", which had already been named electrons by Irish physicist George Johnstone Stoney in 1891.
Thomson scattering is an important phenomenon in plasma physics and was first explained by the physicist J. J. Thomson. As long as the motion of the particle is non-relativistic (i.e. its speed is much less than the speed of light), the main cause of the acceleration of the particle will be due to the electric field component of the incident ...