When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    The regular tetrahedron is self-dual, meaning its dual is another regular tetrahedron. The compound figure comprising two such dual tetrahedra form a stellated octahedron or stella octangula . Its interior is an octahedron , and correspondingly, a regular octahedron is the result of cutting off, from a regular tetrahedron, four regular ...

  3. Net (polyhedron) - Wikipedia

    en.wikipedia.org/wiki/Net_(polyhedron)

    Four hexagons that, when glued to form a regular octahedron as depicted, produce folds across three of the diagonals of each hexagon. The edges between the hexagons remain unfolded. Many different nets can exist for a given polyhedron, depending on the choices of which edges are joined and which are separated.

  4. List of uniform polyhedra by vertex figure - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra...

    These are all quasi-regular as all edges are isomorphic. The compound of 5-cubes shares the same set of edges and vertices. The compound of 5-cubes shares the same set of edges and vertices. The cross forms have a non- orientable vertex figure so the "-" notation has not been used and the "*" faces pass near rather than through the origin.

  5. Common net - Wikipedia

    en.wikipedia.org/wiki/Common_net

    The research of examples of this particular nets dates back to the end of the 20th century, despite that, not many examples have been found. Two classes, however, have been deeply explored, regular polyhedra and cuboids. The search of common nets is usually made by either extensive search or the overlapping of nets that tile the plane.

  6. Tetrahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Tetrahedral_symmetry

    A regular tetrahedron, an example of a solid with full tetrahedral symmetry. A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.

  7. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids ), and four regular star polyhedra (the Kepler–Poinsot polyhedra ), making nine regular polyhedra in all.

  8. Polyhedron - Wikipedia

    en.wikipedia.org/wiki/Polyhedron

    Regular polyhedra are the most highly symmetrical. Altogether there are nine regular polyhedra: five convex and four star polyhedra. The five convex examples have been known since antiquity and are called the Platonic solids. These are the triangular pyramid or tetrahedron, cube, octahedron, dodecahedron and icosahedron:

  9. 5-cell - Wikipedia

    en.wikipedia.org/wiki/5-cell

    In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...