Ad
related to: is algebra necessary article 1 definition dictionary meaning
Search results
Results From The WOW.Com Content Network
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
Most contemporary reference works define mathematics by summarizing its main topics and methods: The abstract science which investigates deductively the conclusions implicit in the elementary conceptions of spatial and numerical relations, and which includes as its main divisions geometry, arithmetic, and algebra. [16] Oxford English Dictionary ...
In algebra, for some set S together with an operation to form a group, it is necessary that be associative. It is also necessary that S include a special element e such that for every x in S , it is the case that e ⋆ {\displaystyle \star } x and x ⋆ {\displaystyle \star } e both equal x .
A great many professional mathematicians take no interest in a definition of mathematics, or consider it undefinable. There is not even consensus on whether mathematics is an art or a science. Some just say, "mathematics is what mathematicians do". [166] [167] A common approach is to define mathematics by its object of study. [168] [169] [170 ...
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures, which are sets with specific operations acting on their elements. [1] Algebraic structures include groups , rings , fields , modules , vector spaces , lattices , and algebras over a field .
The language of mathematics has a wide vocabulary of specialist and technical terms. It also has a certain amount of jargon: commonly used phrases which are part of the culture of mathematics, rather than of the subject.
An algebraic theory consists of a collection of n-ary functional terms with additional rules (axioms).. For example, the theory of groups is an algebraic theory because it has three functional terms: a binary operation a × b, a nullary operation 1 (neutral element), and a unary operation x ↦ x −1 with the rules of associativity, neutrality and inverses respectively.
By definition, equality is an equivalence relation, meaning it is reflexive (i.e. =), symmetric (i.e. if = then =), and transitive (i.e. if = and = then =). [33] It also satisfies the important property that if two symbols are used for equal things, then one symbol can be substituted for the other in any true statement about the first and the ...