Search results
Results From The WOW.Com Content Network
In gravitationally bound systems, the orbital speed of an astronomical body or object (e.g. planet, moon, artificial satellite, spacecraft, or star) is the speed at which it orbits around either the barycenter (the combined center of mass) or, if one body is much more massive than the other bodies of the system combined, its speed relative to the center of mass of the most massive body.
This can be seen in practical terms in artificial satellite orbits; in geostationary orbit at 35,786 kilometres (22,236 mi) the orbital speed is 10,800 kilometres per hour (6,700 mph), whereas in low Earth orbit it is 27,000 kilometres per hour (17,000 mph). Orbits can be achieved at any altitude, as there is no upper limit to velocity in ...
Maneuvering into a large circular orbit, e.g. a geostationary orbit, requires a larger delta-v than an escape orbit, although the latter implies getting arbitrarily far away and having more energy than needed for the orbital speed of the circular orbit. It is also a matter of maneuvering into the orbit.
A line drawn from the planet to the satellite sweeps out equal areas in equal times no matter which portion of the orbit is measured. The square of a satellite's orbital period is proportional to the cube of its average distance from the planet.
A satellite's operator may decide to adjust the orbit, if the risk of collision in the present orbit is unacceptable. (It is not possible to adjust the orbit for events of very low probability; it would soon use up the propellant the satellite carries for orbital station-keeping.)
A satellite in a synchronous orbit that is both equatorial and circular will appear to be suspended motionless above a point on the orbited planet's equator. For synchronous satellites orbiting Earth, this is also known as a geostationary orbit. However, a synchronous orbit need not be equatorial; nor circular.
Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.
Parametrically, ω is the angle from the body's ascending node to its periapsis, measured in the direction of motion. For specific types of orbits, terms such as argument of perihelion (for heliocentric orbits ), argument of perigee (for geocentric orbits ), argument of periastron (for orbits around stars), and so on, may be used (see apsis for ...