Search results
Results From The WOW.Com Content Network
In astrophysics, stellar nucleosynthesis is the creation of chemical elements by nuclear fusion reactions within stars. Stellar nucleosynthesis has occurred since the original creation of hydrogen, helium and lithium during the Big Bang. As a predictive theory, it yields accurate estimates of the observed abundances of the elements.
Stellar evolution is not studied by observing the life of a single star, as most stellar changes occur too slowly to be detected, even over many centuries. Instead, astrophysicists come to understand how stars evolve by observing numerous stars at various points in their lifetime, and by simulating stellar structure using computer models .
Stellar nucleosynthesis is the nuclear process by which new nuclei are produced. It occurs in stars during stellar evolution. It is responsible for the galactic abundances of elements from carbon to iron.
The s-process is believed to occur mostly in asymptotic giant branch stars, seeded by iron nuclei left by a supernova during a previous generation of stars. In contrast to the r-process which is believed to occur over time scales of seconds in explosive environments, the s-process is believed to occur over time scales of thousands of years, passing decades between neutron captures.
The trace amounts of heavier elements were and are produced within stars via stellar nucleosynthesis and ejected as the stars pass beyond the end of their main sequence lifetime. Higher density regions of the interstellar medium form clouds, or diffuse nebulae , [ 3 ] where star formation takes place. [ 4 ]
It is the earliest phase in the process of stellar evolution. [1] For a low-mass star (i.e. that of the Sun or lower), it lasts about 500,000 years. [2] The phase begins when a molecular cloud fragment first collapses under the force of self-gravity and an opaque, pressure-supported core forms inside the collapsing fragment.
Indeed, none of these primordial isotopes of the elements from beryllium to oxygen have yet been detected, although those of beryllium and boron may be able to be detected in the future. So far, the only stable nuclides known experimentally to have been made during Big Bang nucleosynthesis are protium, deuterium, helium-3, helium-4, and lithium-7.
Fusing with additional helium nuclei can create heavier elements in a chain of stellar nucleosynthesis known as the alpha process, but these reactions are only significant at higher temperatures and pressures than in cores undergoing the triple-alpha process.