When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    This captures the relationship between the distance of planets from the Sun, and their orbital periods. Kepler enunciated in 1619 [16] this third law in a laborious attempt to determine what he viewed as the "music of the spheres" according to precise laws, and express it in terms of musical notation. [25] It was therefore known as the harmonic ...

  3. Earth radius - Wikipedia

    en.wikipedia.org/wiki/Earth_radius

    Earth radius (denoted as R 🜨 or R E) is the distance from the center of Earth to a point on or near its surface. Approximating the figure of Earth by an Earth spheroid (an oblate ellipsoid), the radius ranges from a maximum (equatorial radius, denoted a) of nearly 6,378 km (3,963 mi) to a minimum (polar radius, denoted b) of nearly 6,357 km (3,950 mi).

  4. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  5. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    The Hill sphere (gravitational sphere of influence) of the Earth is about 1,500,000 kilometers (0.01 AU) in radius, or approximately four times the average distance to the Moon. [12] [nb 2] This is the maximal distance at which the Earth's gravitational influence is stronger than the more distant Sun and planets. Objects orbiting the Earth must ...

  6. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    For example, the Schwarzschild radius r s of the Earth is roughly 9 mm (3 ⁄ 8 inch); at the surface of the Earth, the corrections to Newtonian gravity are only one part in a billion. The Schwarzschild radius of the Sun is much larger, roughly 2953 meters, but at its surface, the ratio r s / r is roughly 4 parts in a million.

  7. True anomaly - Wikipedia

    en.wikipedia.org/wiki/True_anomaly

    It is the angle between the direction of periapsis and the current position of the body, as seen from the main focus of the ellipse (the point around which the object orbits). The true anomaly is usually denoted by the Greek letters ν or θ , or the Latin letter f , and is usually restricted to the range 0–360° (0–2π rad).

  8. On the Sizes and Distances (Aristarchus) - Wikipedia

    en.wikipedia.org/wiki/On_the_Sizes_and_Distances...

    Angle between the Moon and the Sun during a half moon (directly measurable) L: Distance from the Earth to the Moon: S: Distance from the Earth to the Sun: â„“: Radius of the Moon: s: Radius of the Sun: t: Radius of the Earth: D: Distance from the center of Earth to the vertex of Earth's shadow cone d: Radius of the Earth's shadow at the ...

  9. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    r a is the radius at apoapsis (also "apofocus", "aphelion", "apogee"), i.e., the farthest distance of the orbit to the center of mass of the system, which is a focus of the ellipse. r p is the radius at periapsis (or "perifocus" etc.), the closest distance.