Search results
Results From The WOW.Com Content Network
Eukaryotic chromosome structure refers to the levels of packaging from raw DNA molecules to the chromosomal structures seen during metaphase in mitosis or meiosis. Chromosomes contain long strands of DNA containing genetic information. Compared to prokaryotic chromosomes, eukaryotic chromosomes are much larger in size and are linear chromosomes.
This structure is, however, dynamic and is maintained and remodeled by the actions of a range of histone-like proteins, which associate with the bacterial chromosome. [29] In archaea, the DNA in chromosomes is even more organized, with the DNA packaged within structures similar to eukaryotic nucleosomes. [30] [31]
Throughout the eukaryotic kingdom, the overall structure of chromosome ends is conserved and is characterized by the telomeric tract - a series of short G-rich repeats. This is succeeded by an extensive subtelomeric region consisting of various types and lengths of repeats - the telomere associated sequences (TAS). [ 1 ]
The major structures in DNA compaction: DNA, the nucleosome, the 11 nm beads on a string chromatin fibre and the metaphase chromosome. Chromatin is a complex of DNA and protein found in eukaryotic cells. [1]
In biology, the chromosome scaffold is the backbone that supports the structure of the chromosomes. It is composed of a group of non-histone proteins that are essential in the structure and maintenance of eukaryotic chromosomes throughout the cell cycle. These scaffold proteins are responsible for the condensation of chromatin during mitosis. [1]
Within chromosomes, DNA is held in complexes with structural proteins. These proteins organize the DNA into a compact structure called chromatin. In eukaryotes, this structure involves DNA binding to a complex of small basic proteins called histones, while in prokaryotes multiple types of proteins are involved.
The distinct chromosome territories of chromosome 2 (red) and chromosome 9 (green) are stained with fluorescent in situ hybridization. The cell nucleus contains the majority of the cell's genetic material in the form of multiple linear DNA molecules organized into structures called chromosomes. Each human cell contains roughly two meters of DNA.
This peculiarity could be due to the fact that C. elegans has a specialized chromosome structure known as holocentric chromosomes. Fungi, such as S. cerevisiae [13] and S. pombe [12] have no condensin II from the first. These differences among eukaryotic species provide important implications in the evolution of chromosome architecture (see the ...