When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    In fact, the n th roots of unity being the roots of the polynomial X n – 1, their sum is the coefficient of degree n – 1, which is either 1 or 0 according whether n = 1 or n > 1. Alternatively, for n = 1 there is nothing to prove, and for n > 1 there exists a root z ≠ 1 – since the set S of all the n th roots of unity is a group , z S ...

  3. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    For example, −2 has a real 5th root, = … but −2 does not have any real 6th roots. Every non-zero number x, real or complex, has n different complex number nth roots. (In the case x is real, this count includes any real nth roots.) The only complex root of 0 is 0.

  4. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = ⁠ 1+ √ 5 / 2 ⁠ is the golden ratio. Then the only real solution x = −1.84208... is given by

  5. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    If exponentiation is considered as a multivalued function then the possible values of (−1 ⋅ −1) 1/2 are {1, −1}. The identity holds, but saying {1} = {(−1 ⋅ −1) 1/2 } is incorrect. The identity ( e x ) y = e xy holds for real numbers x and y , but assuming its truth for complex numbers leads to the following paradox , discovered ...

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    The subtraction of only multiples of 2 from the maximal number of positive roots occurs because the polynomial may have nonreal roots, which always come in pairs since the rule applies to polynomials whose coefficients are real. Thus if the polynomial is known to have all real roots, this rule allows one to find the exact number of positive and ...

  7. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    The fifth roots of unity form a regular pentagon. Cyclotomic fields are among the most intensely studied number fields. They are of the form Q(ζ n), where ζ n is a primitive n th root of unity, i.e., a complex number ζ that satisfies ζ n = 1 and ζ m ≠ 1 for all 0 < m < n. [57]

  8. Cyclotomic field - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_field

    In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. [1]Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem.

  9. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    If the three roots are real and distinct, the discriminant is a product of positive reals, that is > If only one root, say r 1, is real, then r 2 and r 3 are complex conjugates, which implies that r 2 – r 3 is a purely imaginary number, and thus that (r 2 – r 3) 2 is real and negative.

  1. Related searches how many real fifth roots does 1 have in real life form definition chemistry

    4 roots of unityquintic function real root
    nth roots of numbers