Ads
related to: heat transfer dimensionless numbers pdf notes
Search results
Results From The WOW.Com Content Network
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Basic reproduction number: number of infections caused on average by an infectious individual over entire infectious period: epidemiology: Body fat percentage: total mass of fat divided by total body mass, multiplied by 100: biology Kt/V: Kt/V: medicine (hemodialysis and peritoneal dialysis treatment; dimensionless time) Waist–hip ratio
The Stanton number (St), is a dimensionless number that measures the ratio of heat transferred into a fluid to the thermal capacity of fluid. The Stanton number is named after Thomas Stanton (engineer) (1865–1931). [1] [2]: 476 It is used to characterize heat transfer in forced convection flows.
In the study of heat conduction, the Fourier number, is the ratio of time, , to a characteristic time scale for heat diffusion, . This dimensionless group is named in honor of J.B.J. Fourier , who formulated the modern understanding of heat conduction. [ 1 ]
The Rayleigh number, shown below, is a dimensionless number that characterizes convection problems in heat transfer.A critical value exists for the Rayleigh number, above which fluid motion occurs.
The turbulent Schmidt number is commonly used in turbulence research and is defined as: [3] = where: is the eddy viscosity in units of (m 2 /s); is the eddy diffusivity (m 2 /s).; The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar).
In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .
The Eckert number (Ec) is a dimensionless number used in continuum mechanics. It expresses the relationship between a flow's kinetic energy and the boundary layer enthalpy difference, and is used to characterize heat transfer dissipation. [1] It is named after Ernst R. G. Eckert. It is defined as