Search results
Results From The WOW.Com Content Network
Anabaena is used as a model organism to study simple vision. The process in which light changes the shape of molecules in the retina, thereby driving the cellular reactions and signals that cause vision in vertebrates, is studied in Anabaena. Anabaena sensory rhodopsin, a specific light-sensitive membrane protein, is central to this research. [5]
A notable symbiotic relationship is that of Anabaena azollae [a] cyanobacteria with Azolla plants. Anabaena reside on the stems and within leaves of Azolla plants. [8] The Azolla plant undergoes photosynthesis and provides fixed carbon for the Anabaena to use as an energy source for dinitrogenases in the heterocyst cells. [8]
Azolla may contain this substance that is a possible cause of neurodegenerative diseases, including causing ALS, Alzheimer's, and Parkinson's. [29] [30] [31] Azolla has been suggested as a foodstuff for human consumption, however, no long-term studies of the safety of eating Azolla have been made on humans. [32]
Some nitrogen-fixing bacteria have symbiotic relationships with plants, especially legumes, mosses and aquatic ferns such as Azolla. [4] Looser non-symbiotic relationships between diazotrophs and plants are often referred to as associative, as seen in nitrogen fixation on rice roots. Nitrogen fixation occurs between some termites and fungi. [5]
The symbiosis of the Chlorella–Hydra first described the symbiosome. The coral Zoanthus robustus has been used as a model organism to study the symbiosis with its microsymbiont algal species of Symbiodinium, with a focus on the symbiosome and its membranes. Methods for isolating the symbiosome membranes have been looked for – the symbiont ...
The Russian botanist Konstantin Mereschkowski first outlined the theory of symbiogenesis (from Greek: σύν syn "together", βίος bios "life", and γένεσις genesis "origin, birth") in his 1905 work, The nature and origins of chromatophores in the plant kingdom, and then elaborated it in his 1910 The Theory of Two Plasms as the Basis ...
Mycorrhizal associations have profoundly impacted the evolution of plant life on Earth ever since the initial adaptation of plant life to land. In evolutionary biology, mycorrhizal symbiosis has prompted inquiries into the possibility that symbiosis, not competition, is the main driver of evolution. [5]
Symmophsis can be use as an analytical advancement that helps other fields of science—such as biochemistry, physiology, and astronomy—work with fields such as cell, molecular, and evolutionary biology. [4] Combining these fields helps researchers better understand past biological adaptions.