Search results
Results From The WOW.Com Content Network
Susceptibility weighted imaging (SWI), originally called BOLD venographic imaging, is an MRI sequence that is exquisitely sensitive to venous blood, hemorrhage and iron storage. SWI uses a fully flow compensated, long echo, gradient recalled echo (GRE) pulse sequence to acquire images.
An MRI pulse sequence in magnetic resonance imaging (MRI) is a particular setting of pulse sequences and pulsed field gradients, resulting in a particular image appearance. [ 1 ] A multiparametric MRI is a combination of two or more sequences, and/or including other specialized MRI configurations such as spectroscopy .
The field strength of the magnet is measured in teslas – and while the majority of systems operate at 1.5 T, commercial systems are available between 0.2 and 7 T. 3T MRI systems, also called 3 Tesla MRIs, have stronger magnets than 1.5 systems and are considered better for images of organs and soft tissue. [7]
A unique advantage of MRI is that it provides not only the phase image but also the magnitude image. In principle, the contrast change, or equivalently the edge, on a magnitude image arises from the underlying change of tissue type, which is the same cause for the change of susceptibility.
Modern 3 Tesla clinical MRI scanner.. Magnetic resonance imaging (MRI) is a medical imaging technique mostly used in radiology and nuclear medicine in order to investigate the anatomy and physiology of the body, and to detect pathologies including tumors, inflammation, neurological conditions such as stroke, disorders of muscles and joints, and abnormalities in the heart and blood vessels ...
Phase contrast MRI is one of the main techniques for magnetic resonance angiography (MRA). This is used to generate images of arteries (and less commonly veins) in order to evaluate them for stenosis (abnormal narrowing), occlusions , aneurysms (vessel wall dilatations, at risk of rupture) or other abnormalities.
However, these techniques are approximate due to phase errors in the MRI data which can rarely be completely controlled (due to imperfect static field shim, effects of spatially selective excitation, signal detection coil properties, motion etc.) or nonzero phase due to just physical reasons (such as the different chemical shift of fat and ...
In 2010, an extended FLASH method with highly undersampled radial data encoding and iterative image reconstruction achieved real-time MRI with a temporal resolution of 20 milliseconds (1/50th of a second). [4] [5] Taken together, this latest development corresponds to an acceleration by a factor of 10,000 compared to the MRI situation before ...