When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  4. Purity (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Purity_(quantum_mechanics)

    A graphical intuition of purity may be gained by looking at the relation between the density matrix and the Bloch sphere, = (+), where is the vector representing the quantum state (on or inside the sphere), and = (,,) is the vector of the Pauli matrices. Since Pauli matrices are traceless, it still holds that tr(ρ) = 1.

  5. Spin matrix - Wikipedia

    en.wikipedia.org/wiki/Spin_matrix

    Pauli matrices, also called the "Pauli spin matrices". Generalizations of Pauli matrices Gamma matrices , which can be represented in terms of the Pauli matrices.

  6. Concurrence (quantum computing) - Wikipedia

    en.wikipedia.org/wiki/Concurrence_(Quantum...

    Also, here, for a positive semidefinite matrix , denotes a positive semidefinite matrix such that =. Note that B {\displaystyle B} is a unique matrix so defined. A generalized version of concurrence for multiparticle pure states in arbitrary dimensions [ 5 ] [ 6 ] (including the case of continuous-variables in infinite dimensions [ 7 ] ) is ...

  7. Generalizations of Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_Pauli...

    This method of generalizing the Pauli matrices refers to a generalization from a single 2-level system to multiple such systems. In particular, the generalized Pauli matrices for a group of qubits is just the set of matrices generated by all possible products of Pauli matrices on any of the qubits. [1]

  8. Spin-1/2 - Wikipedia

    en.wikipedia.org/wiki/Spin-1/2

    When spinors are used to describe the quantum states, the three spin operators (S x, S y, S z,) can be described by 2 × 2 matrices called the Pauli matrices whose eigenvalues are ± ⁠ ħ / 2 ⁠. For example, the spin projection operator S z affects a measurement of the spin in the z direction.

  9. Relativistic wave equations - Wikipedia

    en.wikipedia.org/wiki/Relativistic_wave_equations

    The first two-dimensional spin matrices (better known as the Pauli matrices) were introduced by Pauli in the Pauli equation; the Schrödinger equation with a non-relativistic Hamiltonian including an extra term for particles in magnetic fields, but this was phenomenological.

  1. Related searches what is a pauli matrix test is done for you to calculate the maximum current

    pauli matrix equationpauli matrices wikipedia
    pauli matrixpauli matrix symbol
    pauli matrix quantum mechanicspauli spin matrix