When.com Web Search

  1. Ad

    related to: how to bisect a line segment compass

Search results

  1. Results From The WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    It can only be used to draw a line segment between two points, or to extend an existing line segment. The compass can have an arbitrarily large radius with no markings on it (unlike certain real-world compasses). Circles and circular arcs can be drawn starting from two given points: the centre and a point on the circle. The compass may or may ...

  3. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    In classical geometry, the bisection is a simple compass and straightedge construction, whose possibility depends on the ability to draw arcs of equal radii and different centers: The segment is bisected by drawing intersecting circles of equal radius , whose centers are the endpoints of the segment. The line determined by the points of ...

  4. Angle trisection - Wikipedia

    en.wikipedia.org/wiki/Angle_trisection

    Bisection of arbitrary angles has long been solved.. Using only an unmarked straightedge and a compass, Greek mathematicians found means to divide a line into an arbitrary set of equal segments, to draw parallel lines, to bisect angles, to construct many polygons, and to construct squares of equal or twice the area of a given polygon.

  5. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    Construct the line segment BB' and using a hyperbolic ruler, construct the line OI" such that OI" is perpendicular to BB' and parallel to B'I". Then, line OA is the angle bisector for ᗉ IAI'. [3] Case 2c: IB' is ultraparallel to I'B. Using the ultraparallel theorem, construct the common perpendicular of IB' and I'B, CC'. Let the intersection ...

  6. Angle bisector theorem - Wikipedia

    en.wikipedia.org/wiki/Angle_bisector_theorem

    The angle bisector theorem states that the ratio of the length of the line segment BD to the length of segment CD is equal to the ratio of the length of side AB to the length of side AC: and conversely, if a point D on the side BC of ABC divides BC in the same ratio as the sides AB and AC, then AD is the angle bisector of angle ∠ A.

  7. Midpoint - Wikipedia

    en.wikipedia.org/wiki/Midpoint

    Given two points of interest, finding the midpoint of the line segment they determine can be accomplished by a compass and straightedge construction.The midpoint of a line segment, embedded in a plane, can be located by first constructing a lens using circular arcs of equal (and large enough) radii centered at the two endpoints, then connecting the cusps of the lens (the two points where the ...

  8. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    Incircle and excircles. Incircle and excircles of a triangle. In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. [1] An excircle or escribed circle[2 ...

  9. Compass equivalence theorem - Wikipedia

    en.wikipedia.org/wiki/Compass_equivalence_theorem

    Compass equivalence theorem. In geometry, the compass equivalence theorem is an important statement in compass and straightedge constructions. The tool advocated by Plato in these constructions is a divider or collapsing compass, that is, a compass that "collapses" whenever it is lifted from a page, so that it may not be directly used to ...