When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The fact that the likelihood function can be defined in a way that includes contributions that are not commensurate (the density and the probability mass) arises from the way in which the likelihood function is defined up to a constant of proportionality, where this "constant" can change with the observation , but not with the parameter .

  3. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    In statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function. A likelihood function arises from a probability density function considered as a function

  4. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  5. Probit model - Wikipedia

    en.wikipedia.org/wiki/Probit_model

    One can also take semi-parametric or non-parametric approaches, e.g., via local-likelihood or nonparametric quasi-likelihood methods, which avoid assumptions on a parametric form for the index function and is robust to the choice of the link function (e.g., probit or logit). [4]

  6. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  7. Relative likelihood - Wikipedia

    en.wikipedia.org/wiki/Relative_likelihood

    A likelihood region is the set of all values of θ whose relative likelihood is greater than or equal to a given threshold. In terms of percentages, a p % likelihood region for θ is defined to be. [1] [3] [6]

  8. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    Seen as a function of for given , (= | =) is a probability mass function and so the sum over all (or integral if it is a conditional probability density) is 1. Seen as a function of x {\displaystyle x} for given y {\displaystyle y} , it is a likelihood function , so that the sum (or integral) over all x {\displaystyle x} need not be 1.

  9. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The use of the log likelihood can be generalized to that of the α-log likelihood ratio. Then, the α-log likelihood ratio of the observed data can be exactly expressed as equality by using the Q-function of the α-log likelihood ratio and the α-divergence. Obtaining this Q-function is a generalized E step. Its maximization is a generalized M ...