Search results
Results From The WOW.Com Content Network
Using the orthonormality properties of the real unit-power spherical harmonic functions, it is straightforward to verify that the total power of a function defined on the unit sphere is related to its spectral coefficients by a generalization of Parseval's theorem (here, the theorem is stated for Schmidt semi-normalized harmonics, the ...
This is a table of orthonormalized spherical harmonics that employ the Condon-Shortley phase up to degree =. Some of these formulas are expressed in terms of the Cartesian expansion of the spherical harmonics into polynomials in x , y , z , and r .
The functions , (,) are the spherical harmonics, and the quantity in the square root is a normalizing factor. Recalling the relation between the associated Legendre functions of positive and negative m, it is easily shown that the spherical harmonics satisfy the identity [5]
In many applications, vector spherical harmonics are defined as fundamental set of the solutions of vector Helmholtz equation in spherical coordinates. [ 6 ] [ 7 ] In this case, vector spherical harmonics are generated by scalar functions, which are solutions of scalar Helmholtz equation with the wavevector k {\displaystyle \mathbf {k} } .
The zonal spherical harmonics are rotationally invariant, meaning that () = () for every orthogonal transformation R.Conversely, any function f(x,y) on S n−1 ×S n−1 that is a spherical harmonic in y for each fixed x, and that satisfies this invariance property, is a constant multiple of the degree ℓ zonal harmonic.
Shape descriptors can be classified by their invariance with respect to the transformations allowed in the associated shape definition. Many descriptors are invariant with respect to congruency, meaning that congruent shapes (shapes that could be translated, rotated and mirrored) will have the same descriptor (for example moment or spherical harmonic based descriptors or Procrustes analysis ...
An important geometry related to that of the sphere is that of the real projective plane; it is obtained by identifying antipodal points (pairs of opposite points) on the sphere. Locally, the projective plane has all the properties of spherical geometry, but it has different global properties.
The spherical function φ λ can be identified with the matrix coefficient of the spherical principal series of G. If M is the centraliser of A in K , this is defined as the unitary representation π λ of G induced by the character of B = MAN given by the composition of the homomorphism of MAN onto A and the character λ.