Search results
Results From The WOW.Com Content Network
Charge quantization is the principle that the charge of any object is an integer multiple of the elementary charge. Thus, an object's charge can be exactly 0 e, or exactly 1 e, −1 e, 2 e, etc., but not 1 / 2 e, or −3.8 e, etc. (There may be exceptions to this statement, depending on how "object" is defined; see below.)
1.068 × 10 −19 C (2/3 e)—Charge of up, charm and top quarks [2] 1.602 × 10 −19 C: The elementary charge e, i.e. the negative charge on a single electron or the positive charge on a single proton [3] 10 −18: atto-(aC) ~ 1.8755 × 10 −18 C: Planck charge [4] [5] 10 −17: 1.473 × 10 −17 C (92 e) – Positive charge on a uranium ...
The CODATA recommended value is −e/m e = −1.758 820 008 38 (55) × 10 11 C⋅kg −1. [2] CODATA refers to this as the electron charge-to-mass quotient, but ratio is still commonly used. There are two other common ways of measuring the charge-to-mass ratio of an electron, apart from Thomson and Dunnington's methods.
An electronvolt is the amount of energy gained or lost by a single electron when it moves through an electric potential difference of one volt.Hence, it has a value of one volt, which is 1 J/C, multiplied by the elementary charge e = 1.602 176 634 × 10 −19 C. [2]
elementary charge: 1.602 176 634 ... proton-to-electron mass ratio: 1 836.152 673 426 ... (its value is exactly 1 Da), but the kilogram is not exactly known when ...
In chemistry, the electrochemical equivalent (Eq or Z) of a chemical element is the mass of that element (in grams) transported by a specific quantity of electricity, usually expressed in grams per coulomb of electric charge. [1] The electrochemical equivalent of an element is measured with a voltameter.
This serves to define charge as a quantity in the Gaussian system. The statcoulomb is defined such that if two electric charges of 1 statC each and have a separation of 1 cm, the force of mutual electrical repulsion is 1 dyne. [1] Substituting F = 1 dyn, q G 1 = q G 2 = 1 statC, and r = 1 cm, we get:
In particle physics, the electron mass (symbol: m e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics . It has a value of about 9.109 × 10 −31 kilograms or about 5.486 × 10 −4 daltons , which has an energy-equivalent of about 8.187 × 10 −14 joules ...