Search results
Results From The WOW.Com Content Network
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Molal freezing point constant: ... Density at 25 °C relative to 25 °C water Freezing temperature, °C 10 °C ... Excess volume of the mixture of ethanol and water ...
Benzyl alcohol-15 Dry ice: Ethylene glycol-15 Ice: Sodium chloride-20 1 to 3 ratio of salt to ice. Dry ice: Tetrachloroethylene-22 Dry ice: Carbon Tetrachloride-23 Dry ice: 1,3-Dichlorobenzene-25 Dry ice: o-Xylene-29 Liquid N 2: Bromobenzene-30 Dry ice: m-Toluidine-32 Dry ice: 3-Heptanone-38 Ice: Calcium chloride hexahydrate -40 1 to 0.8 ratio ...
Toggle the table of contents. ... Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) ... Water: 100.00 0.512 0.00 –1.86
As water or ethylene glycol freeze out of the mixture, the concentration of ethanol/methanol increases. This leads to a new, lower freezing point. With dry ice, these baths will never freeze solid, as pure methanol and ethanol both freeze below −78 °C (−98 °C and −114 °C respectively).
Critical point: 508.7 K (235.6 °C), 5370 kPa ... Table data obtained from CRC Handbook of Chemistry and Physics 44th ed. ... for isopropanol/water [4] P = 760 mm Hg ...
A well-known example of a positive azeotrope is an ethanol–water mixture (obtained by fermentation of sugars) consisting of 95.63% ethanol and 4.37% water (by mass), which boils at 78.2 °C. [10] Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. [11]
A 1:1 dilution with water is usually used, resulting in a freezing point of about −34 °F (−37 °C), depending on the formulation. In warmer or colder areas, weaker or stronger dilutions are used, respectively, but a range of 40%/60% to 60%/40% is frequently specified to ensure corrosion protection, and 70%/30% for maximum freeze prevention ...