Search results
Results From The WOW.Com Content Network
Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Poisson ratio: 0.064–0.28 [10] Mohs hardness ... Silicon is widely regarded as the predominant semiconductor material due to its versatile applications in various ...
E 1 and E 2 are the Young's moduli in the 1- and 2-direction and G 12 is the in-plane shear modulus. v 12 is the major Poisson's ratio and v 21 is the minor Poisson's ratio. The flexibility matrix [S] is symmetric. The minor Poisson's ratio can hence be found if E 1, E 2 and v 12 are known.
room temperature. Calculated using Wikipedia reported values for density (21450 kg/m 3), Young's Modulus (167 GPa), and Poisson's ratio (0.38) CRC: 3260: 1730: 2800: CRC cites American Institute of Physics Handbook (AIPH) table 3f-2 for this value, but in AIPH table 2f-6 there are elastic constants reported that yield 3700,1570, 2620 WEL: 2680 ...
AA 6063 is an aluminium alloy, with magnesium and silicon as the alloying elements. The standard controlling its composition is maintained by The Aluminum Association. It has generally good mechanical properties and is heat treatable and weldable. It is similar to the British aluminium alloy HE9.
The earliest published example of a material with negative Poisson's constant is due to A. G. Kolpakov in 1985, "Determination of the average characteristics of elastic frameworks"; the next synthetic auxetic material was described in Science in 1987, entitled "Foam structures with a Negative Poisson's Ratio" [1] by R.S. Lakes from the ...
For example, doping pure silicon with a small amount of phosphorus will increase the carrier density of electrons, n. Then, since n > p, the doped silicon will be a n-type extrinsic semiconductor. Doping pure silicon with a small amount of boron will increase the carrier density of holes, so then p > n, and it will be a p-type extrinsic ...