Search results
Results From The WOW.Com Content Network
The electron–hole pair is the fundamental unit of generation and recombination in inorganic semiconductors, corresponding to an electron transitioning between the valence band and the conduction band where generation of an electron is a transition from the valence band to the conduction band and recombination leads to a reverse transition.
Semiconductors also can show several resonances well below the fundamental exciton resonance when phonon-assisted electron–hole recombination takes place. These processes are describable by three-particle correlations (or higher) where photon, electron–hole pair, and a lattice vibration, i.e., a phonon, become correlated.
An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.
Auger recombination is a similar Auger effect which occurs in semiconductors. An electron and electron hole (electron-hole pair) can recombine giving up their energy to an electron in the conduction band, increasing its energy. The reverse effect is known as impact ionization.
When an electron leaves a helium atom, it leaves an electron hole in its place. This causes the helium atom to become positively charged. In physics, chemistry, and electronic engineering, an electron hole (often simply called a hole) is a quasiparticle denoting the lack of an electron at a position where one could exist in an atom or atomic lattice.
There are several mechanisms by which minority carriers can recombine, each of which subtract from the carrier lifetime. The main mechanisms that play a role in modern devices are band-to-band recombination and stimulated emission, which are forms of radiative recombination, and Shockley-Read-Hall (SRH), Auger, Langevin, and surface recombination, which are forms of non-radiative recombination.
The same goes for a hole moving in the opposite direction. It is easiest to understand how a current is generated when considering electron-hole pairs that are created in the depletion zone, which is where there is a strong electric field. The electron is pushed by this field toward the n side and the hole toward the p side.
Once a photon has been absorbed and has generated an electron-hole pair, these charges must be separated and collected at the junction. A "good" material avoids charge recombination. Charge recombination causes a drop in the external quantum efficiency.