When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    Folding activation functions are extensively used in the pooling layers in convolutional neural networks, and in output layers of multiclass classification networks. These activations perform aggregation over the inputs, such as taking the mean , minimum or maximum .

  3. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    A capsule neural network (CapsNet) is a machine learning system that is a type of artificial neural network (ANN) that can be used to better model hierarchical relationships. The approach is an attempt to more closely mimic biological neural organization.

  4. Rectifier (neural networks) - Wikipedia

    en.wikipedia.org/wiki/Rectifier_(neural_networks)

    Plot of the ReLU (blue) and GELU (green) functions near x = 0. In the context of artificial neural networks, the rectifier or ReLU (rectified linear unit) activation function [1] [2] is an activation function defined as the non-negative part of its argument, i.e., the ramp function:

  5. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras contains numerous implementations of commonly used neural-network building blocks such as layers, objectives, activation functions, optimizers, and a host of tools for working with image and text data to simplify programming in deep neural network area. [11]

  6. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The values of parameters are derived via learning. Examples of hyperparameters include learning rate, the number of hidden layers and batch size. [citation needed] The values of some hyperparameters can be dependent on those of other hyperparameters. For example, the size of some layers can depend on the overall number of layers. [citation needed]

  7. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch supports various sub-types of Tensors. [29] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics. The meaning of the word in machine learning is only superficially related to its original meaning as a certain kind of object in linear algebra. Tensors in PyTorch are simply multi-dimensional ...

  8. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1] In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text. If the input text is long, the fixed-length vector ...

  9. Multilayer perceptron - Wikipedia

    en.wikipedia.org/wiki/Multilayer_perceptron

    A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU. [8] Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]