Search results
Results From The WOW.Com Content Network
Modal dispersion occurs even with an ideal, monochromatic light source. A special case of modal dispersion is polarization mode dispersion (PMD), a fiber dispersion phenomenon usually associated with single-mode fibers. PMD results when two modes that normally travel at the same speed due to fiber core geometric and stress symmetry (for example ...
In fiber-optic communication, an intramodal dispersion, is a category of dispersion that occurs within a single mode optical fiber. [1] This dispersion mechanism is a result of material properties of optical fiber and applies to both single-mode and multi-mode fibers.
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
The parabolic profile results in continual refocusing of the rays in the core, and minimizes modal dispersion. Multi-mode optical fiber can be built with either a graded-index or a step-index profile. The advantage of graded-index multi-mode fiber compared to step-index fiber is a considerable decrease in modal dispersion. This means that the ...
Polarization mode dispersion (PMD) is a form of modal dispersion where two different polarizations of light in a waveguide, which normally travel at the same speed, travel at different speeds due to random imperfections and asymmetries, causing random spreading of optical pulses. Unless it is compensated, which is difficult, this ultimately ...
Newton's contribution to prismatic dispersion was the first to outline multiple-prism arrays. Multiple-prism configurations, as beam expanders, became central to the design of the tunable laser more than 275 years later and set the stage for the development of the multiple-prism dispersion theory .
A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency