Search results
Results From The WOW.Com Content Network
As discussed in § Constructibility, only certain angles that are rational multiples of radians have trigonometric values that can be expressed with square roots. The angle 1°, being π / 180 = π / ( 2 2 ⋅ 3 2 ⋅ 5 ) {\displaystyle \pi /180=\pi /(2^{2}\cdot 3^{2}\cdot 5)} radians, has a repeated factor of 3 in the denominator and therefore ...
A mathematical constant is a key number whose value is fixed by an unambiguous definition, ... as a root of the polynomial ... [45] 23.14069 26327 79269 ...
Notation for the (principal) square root of x. For example, √ 25 = 5, since 25 = 5 ⋅ 5, or 5 2 (5 squared). In mathematics, a square root of a number x is a number y such that =; in other words, a number y whose square (the result of multiplying the number by itself, or ) is x. [1]
In mathematics, the radical symbol, radical sign, root symbol, or surd is a symbol for the square root or higher-order root of a number. The square root of a number x is written as x , {\displaystyle {\sqrt {x}},}
A root of degree 2 is called a square root and a root of degree 3, a cube root. Roots of higher degree are referred by using ordinal numbers, as in fourth root, twentieth root, etc. The computation of an n th root is a root extraction. For example, 3 is a square root of 9, since 3 2 = 9, and −3 is also a square root of 9, since (−3) 2 = 9.
The digital root pattern for triangular numbers, repeating every nine terms, as shown above, is "1, 3, 6, 1, 6, 3, 1, 9, 9". The converse of the statement above is, however, not always true. For example, the digital root of 12, which is not a triangular number, is 3 and divisible by three.
The multiplicative inverse (reciprocal) of the square root of two is a widely used constant, with the decimal value: [20] 0.70710 67811 86547 52440 08443 62104 84903 92848 35937 68847 ... It is often encountered in geometry and trigonometry because the unit vector , which makes a 45° angle with the axes in a plane , has the coordinates
In other words, the absolute values are multiplied and the arguments are added to yield the polar form of the product. The picture at the right illustrates the multiplication of (+) (+) = +. Because the real and imaginary part of 5 + 5i are equal, the argument of that number is 45 degrees, or π/4 (in radian).