Search results
Results From The WOW.Com Content Network
Organocopper complexes in particular react sluggishly in the absence of a Lewis acid. Although magnesium bromide generated in situ from the reaction of Grignard reagents and copper(I) halides can serve this role (see above), external Lewis acids are also useful. In the presence of boron trifluoride etherate, organocopper complexes are able to ...
Palladium offers a faster, more selective reaction. Copper reagents and catalysts continue to be the subject of innovation. Relative to palladium, copper is cheaper but the turnover numbers are often lower with copper and the reaction conditions more vigorous. [13] Reactions of Li + [CuR 2] − with alkyl halides R'−X give the coupling product:
Some copper proteins form oxo complexes, which also feature copper(III). [20] With tetrapeptides, purple-colored copper(III) complexes are stabilized by the deprotonated amide ligands. [21] Complexes of copper(III) are also found as intermediates in reactions of organocopper compounds. [22] For example, in the Kharasch–Sosnovsky reaction.
A green layer of verdigris (copper carbonate) can often be seen on old copper structures, such as the roofing of many older buildings [21] and the Statue of Liberty. [22] Copper tarnishes when exposed to some sulfur compounds, with which it reacts to form various copper sulfides. [23]
Lithium dimethylcopper (CH 3) 2 CuLi can be prepared by adding copper(I) iodide to methyllithium in tetrahydrofuran at −78 °C. In the reaction depicted below, [4] the Gilman reagent is a methylating reagent reacting with an alkyne in a conjugate addition, and the ester group forms a cyclic enone. Scheme 1. Example Gilman reagent reaction
As a significant product of copper mining, copper(II) oxide is the starting point for the production of many other copper salts. For example, many wood preservatives are produced from copper oxide. [3] Cupric oxide is used as a pigment in ceramics to produce blue, red, and green, and sometimes gray, pink, or black glazes. [3]
The most reactive metals, such as sodium, will react with cold water to produce hydrogen and the metal hydroxide: . 2 Na (s) + 2 H 2 O (l) →2 NaOH (aq) + H 2 (g). Metals in the middle of the reactivity series, such as iron, will react with acids such as sulfuric acid (but not water at normal temperatures) to give hydrogen and a metal salt, such as iron(II) sulfate:
Cu 2 S can be prepared by treating copper with sulfur or H 2 S. [2] The rate depends on the particle size and temperature. [5] Cu 2 S reacts with oxygen to form SO 2: [6] 2 Cu 2 S + 3 O 2 → 2 Cu 2 O + 2 SO 2. The production of copper from chalcocite is a typical process in extracting the metal from ores.