When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The fact that the likelihood function can be defined in a way that includes contributions that are not commensurate (the density and the probability mass) arises from the way in which the likelihood function is defined up to a constant of proportionality, where this "constant" can change with the observation , but not with the parameter .

  3. Notation in probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Notation_in_probability...

    Survival functions or complementary cumulative distribution functions are often denoted by placing an overbar over the symbol for the cumulative: ¯ = (), or denoted as (), In particular, the pdf of the standard normal distribution is denoted by φ ( z ) {\textstyle \varphi (z)} , and its cdf by Φ ( z ) {\textstyle \Phi (z)} .

  4. Glossary of probability and statistics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_probability...

    Also confidence coefficient. A number indicating the probability that the confidence interval (range) captures the true population mean. For example, a confidence interval with a 95% confidence level has a 95% chance of capturing the population mean. Technically, this means that, if the experiment were repeated many times, 95% of the CIs computed at this level would contain the true population ...

  5. Likelihood principle - Wikipedia

    en.wikipedia.org/wiki/Likelihood_principle

    In statistics, the likelihood principle is the proposition that, given a statistical model, all the evidence in a sample relevant to model parameters is contained in the likelihood function. A likelihood function arises from a probability density function considered as a function of its distributional parameterization argument.

  6. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [ 1 ] [ 2 ] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events ( subsets of the sample space).

  7. Probability - Wikipedia

    en.wikipedia.org/wiki/Probability

    These data are incorporated in a likelihood function. The product of the prior and the likelihood, when normalized, results in a posterior probability distribution that incorporates all the information known to date. [9] By Aumann's agreement theorem, Bayesian agents whose prior beliefs are similar will end up with similar posterior beliefs ...

  8. Posterior probability - Wikipedia

    en.wikipedia.org/wiki/Posterior_probability

    It contrasts with the likelihood function, which is the probability of the evidence given the parameters: (|). The two are related as follows: Given a prior belief that a probability distribution function is p ( θ ) {\displaystyle p(\theta )} and that the observations x {\displaystyle x} have a likelihood p ( x | θ ) {\displaystyle p(x|\theta ...

  9. Autoregressive model - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_model

    Two distinct variants of maximum likelihood are available: in one (broadly equivalent to the forward prediction least squares scheme) the likelihood function considered is that corresponding to the conditional distribution of later values in the series given the initial p values in the series; in the second, the likelihood function considered ...