Search results
Results From The WOW.Com Content Network
The core motivation was to give a simple presentation of deductive reasoning that closely mirrors how reasoning actually takes place. [68] In this sense, natural deduction stands in contrast to other less intuitive proof systems, such as Hilbert-style deductive systems , which employ axiom schemes to express logical truths . [ 66 ]
The form shows that inference from P implies Q to the negation of Q implies the negation of P is a valid argument. The history of the inference rule modus tollens goes back to antiquity. [4] The first to explicitly describe the argument form modus tollens was Theophrastus. [5] Modus tollens is closely related to modus ponens.
Forms of logical reasoning can be distinguished based on how the premises support the conclusion. Deductive arguments offer the strongest possible support. Non-deductive arguments are weaker but are nonetheless correct forms of reasoning. [28] [29] The term "proof" is often used for deductive arguments or very strong non-deductive arguments. [30]
A standard view is that whether an argument is valid is a matter of the argument's logical form. Many techniques are employed by logicians to represent an argument's logical form. A simple example, applied to two of the above illustrations, is the following: Let the letters 'P', 'Q', and 'S' stand, respectively, for the set of men, the set of ...
A propositional argument using modus ponens is said to be deductive. In single-conclusion sequent calculi , modus ponens is the Cut rule. The cut-elimination theorem for a calculus says that every proof involving Cut can be transformed (generally, by a constructive method) into a proof without Cut, and hence that Cut is admissible .
A syllogism (Ancient Greek: συλλογισμός, syllogismos, 'conclusion, inference') is a kind of logical argument that applies deductive reasoning to arrive at a conclusion based on two propositions that are asserted or assumed to be true. "Socrates" at the Louvre
The reason for this is that these logics describe defeasible reasoning, and conditionals that appear in real-world contexts typically allow for exceptions, default assumptions, ceteris paribus conditions, or just simple uncertainty. An example, derived from Ernest W. Adams, [3] If Jones wins the election, Smith will retire after the election.
If yes, the argument is strong. If no, it is weak. A strong argument is said to be cogent if it has all true premises. Otherwise, the argument is uncogent. The military budget argument example is a strong, cogent argument. Non-deductive logic is reasoning using arguments in which the premises support the conclusion but do not entail it.