Search results
Results From The WOW.Com Content Network
The conventional definition of the spin quantum number is s = n / 2 , where n can be any non-negative integer. Hence the allowed values of s are 0, 1 / 2 , 1, 3 / 2 , 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...
A lightning discharge consists primarily of a flow of electrons. [130] The electric potential needed for lightning can be generated by a triboelectric effect. [131] [132] If a body has more or fewer electrons than are required to balance the positive charge of the nuclei, then that object has a net electric charge.
Spin quantum numbers apply also to systems of coupled spins, such as atoms that may contain more than one electron. Capitalized symbols are used: S for the total electronic spin, and m S or M S for the z-axis component. A pair of electrons in a spin singlet state has S = 0, and a pair in the triplet state has S = 1, with m S = −1, 0, or +1.
Ballistic electrons behave like light in a waveguide or a high-quality optical assembly. Non-ballistic electrons behave like light diffused in milk or reflected off a white wall or a piece of paper. Electrons can be scattered several ways in a conductor. Electrons have several properties: wavelength (energy), direction, phase, and spin orientation.
The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital location and the holon carrying the charge, but in certain conditions they can behave as independent quasiparticles.
The spin magnetic moment is intrinsic for an electron. [3] It is = . Here S is the electron spin angular momentum. The spin g-factor is approximately two: . The factor of two indicates that the electron appears to be twice as effective in producing a magnetic moment as a charged body for which the mass and charge distributions are identical.
Electrons are affected by two thermodynamic forces [from the charge, ∇(E F /e c) where E F is the Fermi level and e c is the electron charge and temperature gradient, ∇(1/T)] because they carry both charge and thermal energy, and thus electric current j e and heat flow q are described with the thermoelectric tensors (A ee, A et, A te, and A ...
The speed of this flow has multiple meanings. In everyday electrical and electronic devices, the signals travel as electromagnetic waves typically at 50%–99% of the speed of light in vacuum. The electrons themselves move much more slowly. See drift velocity and electron mobility.