Search results
Results From The WOW.Com Content Network
It indicates altitude obtained when an altimeter is set to an agreed baseline pressure under certain circumstances in which the aircraft’s altimeter would be unable to give a useful altitude readout. Examples would be landing at a high altitude or near sea level under conditions of exceptionally high air pressure.
Pressure as a function of the height above the sea level. There are two equations for computing pressure as a function of height. The first equation is applicable to the atmospheric layers in which the temperature is assumed to vary with altitude at a non null lapse rate of : = [,, ()] ′, The second equation is applicable to the atmospheric layers in which the temperature is assumed not to ...
The equation that relates the two altitudes are (where z is the geometric altitude, h is the geopotential altitude, and r 0 = 6,356,766 m in this model): = Note that the Lapse Rates cited in the table are given as °C per kilometer of geopotential altitude, not geometric altitude.
The graph on the right above was developed for a temperature of 15 °C and a relative humidity of 0%. At low altitudes above sea level, the pressure decreases by about 1.2 kPa (12 hPa) for every 100 metres. For higher altitudes within the troposphere, the following equation (the barometric formula) relates atmospheric pressure p to altitude h:
The greater the altitude, the lower the pressure. When a barometer is supplied with a nonlinear calibration so as to indicate altitude, the instrument is a type of altimeter called a pressure altimeter or barometric altimeter. A pressure altimeter is the altimeter found in most aircraft, and skydivers use wrist-mounted versions for similar ...
Therefore, a pressure altitude of 32,000 ft (9,800 m) is referred to as "flight level 320". In metre altitudes the format is Flight Level xx000 metres. Flight levels are usually designated in writing as FLxxx, where xxx is a two- or three-digit number indicating the pressure altitude in units of 100 feet (30 m). In radio communications, FL290 ...
For this reason, this model may also be called barotropic (density depends only on pressure). For the isothermal-barotropic model, density and pressure turn out to be exponential functions of altitude. The increase in altitude necessary for P or ρ to drop to 1/e of its initial value is called the scale height:
The pressure (force per unit area) at a given altitude is a result of the weight of the overlying atmosphere. If at a height of z the atmosphere has density ρ and pressure P, then moving upwards an infinitesimally small height dz will decrease the pressure by amount dP, equal to the weight of a layer of atmosphere of thickness dz.