Search results
Results From The WOW.Com Content Network
Radial velocity is found by measuring the Doppler width of spectral lines of a collection of objects; the more radial velocities one measures, the more accurately one knows their dispersion. A central velocity dispersion refers to the σ of the interior regions of an extended object, such as a galaxy or cluster.
Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency ...
Group-velocity dispersion is quantified as the derivative of the reciprocal of the group velocity with respect to angular frequency, which results in group-velocity dispersion = d 2 k/dω 2. If a light pulse is propagated through a material with positive group-velocity dispersion, then the shorter-wavelength components travel slower than the ...
Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.
Using the virial theorem, the velocity dispersion σ can be used in a similar way. Taking the kinetic energy (per particle) of the system as T = 1 / 2 v 2 ~ 3 / 2 σ 2 , and the potential energy (per particle) as U ~ 3 / 5 GM / R we can write
In optics, group-velocity dispersion (GVD) is a characteristic of a dispersive medium, used most often to determine how the medium affects the duration of an optical pulse traveling through it. Formally, GVD is defined as the derivative of the inverse of group velocity of light in a material with respect to angular frequency, [1] [2]
Dispersion of gravity waves on a fluid surface. Phase and group velocity divided by shallow-water phase velocity √ gh as a function of relative depth h / λ. Blue lines (A): phase velocity; Red lines (B): group velocity; Black dashed line (C): phase and group velocity √ gh valid in shallow water.
Frequency dispersion in groups of gravity waves on the surface of deep water. The red square moves with the phase velocity, and the green circles propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square overtakes two green circles when moving from the left to the right of the figure.