Ad
related to: perceptual control loop theory examples
Search results
Results From The WOW.Com Content Network
Perceptual control theory (PCT) is a model of behavior based on the properties of negative feedback control loops. A control loop maintains a sensed variable at or near a reference value by means of the effects of its outputs upon that variable, as mediated by physical properties of the environment.
Living control systems differ from those specified by Engineering control theory (a thermostat is a simple example), for which the reference value (setpoint) for control is specified outside the system by what is called the controller, [6] whereas in living systems the reference variable for each feedback control loop in a control hierarchy [7 ...
The Method of Levels originated in Bill Powers' phenomenological investigations into the mobility of awareness relative to the perceptual hierarchy. [3] He prepared a description of it for his 1973 book, Behavior: The Control of Perception, but the editor persuaded him to remove that chapter and the chapter on emotion. [4]
Perceptual control theory: A model of behavior based on the properties of negative feedback (cybernetic) control loops. A key insight of PCT is that the controlled variable is not the output of the system (the behavioral actions), but its input, "perception".
This figure depicts an example of combination of a forward model and an inverse model. Here the reference input is the target sensory state that controller (inverse model) will use to compute a motor command. The plant acts out the motor command which results in a new sensory state. This new sensory state can be compared to the state predicted ...
The control action is the switching on/off of the boiler, but the controlled variable should be the building temperature, but is not because this is open-loop control of the boiler, which does not give closed-loop control of the temperature. In closed loop control, the control action from the controller is dependent on the process output.
The loop is: reinforcing if, after going around the loop, one ends up with the same result as the initial assumption. balancing if the result contradicts the initial assumption. Or to put it in other words: reinforcing loops have an even number of negative links (zero also is even, see example below) balancing loops have an odd number of ...
Closed loop control [24]: 186 is a feedback based mechanism of motor control, where any act on the environment creates some sort of change that affects future performance through feedback. Closed loop motor control is best suited to continuously controlled actions, but does not work quickly enough for ballistic actions.