Search results
Results From The WOW.Com Content Network
Matrix isolation is an experimental technique used in chemistry and physics. It generally involves a material being trapped within an unreactive matrix. A host matrix is a continuous solid phase in which guest particles (atoms, molecules, ions, etc.) are embedded. The guest is said to be isolated within the host matrix.
A successfully completed college-level calculus course like one offered via Advanced Placement program (AP Calculus AB and AP Calculus BC) is a transfer-level course—that is, it can be accepted by a college as a credit towards graduation requirements. Prestigious colleges and universities are believed to require successful completion AP ...
Several important classes of matrices are subsets of each other. This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to ...
The representation of dimension zero is considered to be neither reducible nor irreducible, [1] just as the number 1 is considered to be neither composite nor prime. Under the assumption that the characteristic of the field K does not divide the size of the group, representations of finite groups can be decomposed into a direct sum of ...
Matrices are used in most areas of mathematics and scientific fields, either directly, or through their use in geometry and numerical analysis. Matrix theory is the branch of mathematics that focuses on the study of matrices.
The study of mathematical proof is particularly important in logic, and has accumulated to automated theorem proving and formal verification of software. Logical formulas are discrete structures, as are proofs , which form finite trees [ 10 ] or, more generally, directed acyclic graph structures [ 11 ] [ 12 ] (with each inference step combining ...
Topology, the study of properties that are kept under continuous deformations. Algebraic topology, the use in topology of algebraic methods, mainly homological algebra. Discrete geometry, the study of finite configurations in geometry. Convex geometry, the study of convex sets, which takes its importance from its applications in optimization.
The next important class of groups is given by matrix groups, or linear groups. Here G is a set consisting of invertible matrices of given order n over a field K that is closed under the products and inverses. Such a group acts on the n-dimensional vector space K n by linear transformations.