Search results
Results From The WOW.Com Content Network
Biocatalysis utilizes these biological macromolecules to catalyze small molecule transformations. Biocatalysis refers to the use of living (biological) systems or their parts to speed up chemical reactions. In biocatalytic processes, natural catalysts, such as enzymes, perform chemical transformations on organic compounds.
Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life. The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics. The rate of reaction of many chemical reactions shows a linear response as function of the concentration of substrate molecules.
Enzymes (/ ˈ ɛ n z aɪ m z /) are proteins that act as biological catalysts by accelerating chemical reactions.The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products.
Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.
Catalysis (/ k ə ˈ t æ l ə s ɪ s /) is the increase in rate of a chemical reaction due to an added substance known as a catalyst [1] [2] (/ ˈ k æ t əl ɪ s t /). Catalysts are not consumed by the reaction and remain unchanged after it. [ 3 ]
However, the idea of RNA catalysis is motivated in part by the old question regarding the origin of life: Which comes first, enzymes that do the work of the cell or nucleic acids that carry the information required to produce the enzymes? The concept of "ribonucleic acids as catalysts" circumvents this problem.
Biochemistry is the study of the chemical substances and vital processes occurring in live organisms. Biochemists focus heavily on the role, function, and structure of biomolecules. The study of the chemistry behind biological processes and the synthesis of biologically active molecules are applications of biochemistry.
Organisation of enzyme structure and lysozyme example. Binding sites in blue, catalytic site in red and peptidoglycan substrate in black. (In biology and biochemistry, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction.