Search results
Results From The WOW.Com Content Network
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.
A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).
A tree of primitive Pythagorean triples is a mathematical tree in which each node represents a primitive Pythagorean triple and each primitive Pythagorean triple is represented by exactly one node. In two of these trees, Berggren's tree and Price's tree, the root of the tree is the triple (3,4,5), and each node has exactly three children ...
Triangles based on Pythagorean triples are Heronian, meaning they have integer area as well as integer sides. The possible use of the 3 : 4 : 5 triangle in Ancient Egypt, with the supposed use of a knotted rope to lay out such a triangle, and the question whether Pythagoras' theorem was known at that time, have been much debated. [3]
The use of the Pythagorean theorem and the tangent secant theorem can be replaced by a single application of the power of a point theorem. Case of acute angle γ, where a < 2b cos γ. Drop the perpendicular from A onto a = BC, creating a line segment of length b cos γ. Duplicate the right triangle to form the isosceles triangle ACP.
The Pythagorean trigonometric identity, also called simply the Pythagorean identity, is an identity expressing the Pythagorean theorem in terms of trigonometric functions. Along with the sum-of-angles formulae , it is one of the basic relations between the sine and cosine functions.
The sutras contain statements of the Pythagorean theorem, both in the case of an isosceles right triangle and in the general case, as well as lists of Pythagorean triples. [23] In Baudhayana, for example, the rules are given as follows: