When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hugging Face - Wikipedia

    en.wikipedia.org/wiki/Hugging_Face

    Hugging Face, Inc. is an American company incorporated under the Delaware General Corporation Law [1] and based in New York City that develops computation tools for building applications using machine learning.

  3. BLOOM (language model) - Wikipedia

    en.wikipedia.org/wiki/BLOOM_(language_model)

    BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [3]

  4. T5 (language model) - Wikipedia

    en.wikipedia.org/wiki/T5_(language_model)

    T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.

  5. Embedded Javascript - Wikipedia

    en.wikipedia.org/wiki/Embedded_Javascript

    [citation needed] EJS was inspired by templating systems like ERB ( also known as Embedded Ruby) used in Ruby on Rails, which also allows code embedding within HTML. [4] ELS was created for JavaScript developers to create server-rendered HTML pages in an easy and familiar way, likely other templating engines available in other programming ...

  6. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    This is achieved by prompting the text encoder with class names and selecting the class whose embedding is closest to the image embedding. For example, to classify an image, they compared the embedding of the image with the embedding of the text "A photo of a {class}.", and the {class} that results in the highest dot product is outputted.

  7. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The three embedding vectors are added together representing the initial token representation as a function of these three pieces of information. After embedding, the vector representation is normalized using a LayerNorm operation, outputting a 768-dimensional vector for each input token. After this, the representation vectors are passed forward ...

  8. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    In practice however, BERT's sentence embedding with the [CLS] token achieves poor performance, often worse than simply averaging non-contextual word embeddings. SBERT later achieved superior sentence embedding performance [8] by fine tuning BERT's [CLS] token embeddings through the usage of a siamese neural network architecture on the SNLI dataset.

  9. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]