When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    The first algorithm for random decision forests was created in 1995 by Tin Kam Ho [1] using the random subspace method, [2] which, in Ho's formulation, is a way to implement the "stochastic discrimination" approach to classification proposed by Eugene Kleinberg.

  3. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Random Forests are more complex to implement than lone decision trees or other algorithms. This is because they take extra steps for bagging, as well as the need for recursion in order to produce an entire forest, which complicates implementation.

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Rotation forest – in which every decision tree is trained by first applying principal component analysis (PCA) on a random subset of the input features. [ 13 ] A special case of a decision tree is a decision list , [ 14 ] which is a one-sided decision tree, so that every internal node has exactly 1 leaf node and exactly 1 internal node as a ...

  5. Expected linear time MST algorithm - Wikipedia

    en.wikipedia.org/wiki/Expected_linear_time_MST...

    The key insight to the algorithm is a random sampling step which partitions a graph into two subgraphs by randomly selecting edges to include in each subgraph. The algorithm recursively finds the minimum spanning forest of the first subproblem and uses the solution in conjunction with a linear time verification algorithm to discard edges in the graph that cannot be in the minimum spanning tree.

  6. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    SCiForest (Isolation Forest with Split-selection Criterion) is an extension of the original Isolation Forest algorithm, specifically designed to target clustered anomalies. It introduces a split-selection criterion and uses random hyper-planes that are non-axis-parallel to the original attributes.

  7. Random tree - Wikipedia

    en.wikipedia.org/wiki/Random_tree

    In mathematics and computer science, a random tree is a tree or arborescence that is formed by a stochastic process. Types of random trees include: Types of random trees include: Uniform spanning tree , a spanning tree of a given graph in which each different tree is equally likely to be selected

  8. Random subspace method - Wikipedia

    en.wikipedia.org/wiki/Random_subspace_method

    An ensemble of models employing the random subspace method can be constructed using the following algorithm: Let the number of training points be N and the number of features in the training data be D. Let L be the number of individual models in the ensemble. For each individual model l, choose n l (n l < N) to be the number of input points for l.

  9. Rapidly exploring random tree - Wikipedia

    en.wikipedia.org/wiki/Rapidly_exploring_random_tree

    A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search nonconvex, high-dimensional spaces by randomly building a space-filling tree.The tree is constructed incrementally from samples drawn randomly from the search space and is inherently biased to grow towards large unsearched areas of the problem.