Search results
Results From The WOW.Com Content Network
A basic block is the simplest building block studied in the original ResNet. [1] This block consists of two sequential 3x3 convolutional layers and a residual connection. The input and output dimensions of both layers are equal. Block diagram of ResNet (2015). It shows a ResNet block with and without the 1x1 convolution.
Modern activation functions include the logistic function used in the 2012 speech recognition model developed by Hinton et al; [2] the ReLU used in the 2012 AlexNet computer vision model [3] [4] and in the 2015 ResNet model; and the smooth version of the ReLU, the GELU, which was used in the 2018 BERT model. [5]
Residual connections, or skip connections, refers to the architectural motif of +, where is an arbitrary neural network module. This gives the gradient of ∇ f + I {\displaystyle \nabla f+I} , where the identity matrix do not suffer from the vanishing or exploding gradient.
Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]
As an example, a single 5×5 convolution can be factored into 3×3 stacked on top of another 3×3. Both has a receptive field of size 5×5. The 5×5 convolution kernel has 25 parameters, compared to just 18 in the factorized version. Thus, the 5×5 convolution is strictly more powerful than the factorized version.
Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e ...
Block diagram for the full Transformer architecture. The stack on the right is a standard pre-LN Transformer decoder, which is essentially the same as the SpatialTransformer . Similar to the standard U-Net , the U-Net backbone used in the SD 1.5 is essentially composed of down-scaling layers followed by up-scaling layers.
The usual estimate of σ 2 is the internally studentized residual ^ = = ^. where m is the number of parameters in the model (2 in our example).. But if the i th case is suspected of being improbably large, then it would also not be normally distributed.