Search results
Results From The WOW.Com Content Network
The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations.
Gamma γ ; Internal conversion ... Q = radiation quality factor ... These equations need to be refined such that the notation is defined as has been done for the ...
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation {,} = + = ,where the curly brackets {,} represent the anticommutator, is the Minkowski metric with signature (+ − − −), and is the 4 × 4 identity matrix.
Materials for shielding gamma rays are typically measured by the thickness required to reduce the intensity of the gamma rays by one half (the half-value layer or HVL). For example, gamma rays that require 1 cm (0.4 inch) of lead to reduce their intensity by 50% will also have their intensity reduced in half by 4.1 cm of granite rock, 6 cm (2.5 ...
Maxwell's equations may be combined to demonstrate how fluctuations in electromagnetic fields (waves) propagate at a constant speed in vacuum, c (299 792 458 m/s [2]). Known as electromagnetic radiation, these waves occur at various wavelengths to produce a spectrum of radiation from radio waves to gamma rays.
Since a gyromagnetic factor equal to 2 follows from Dirac's equation, it is a frequent misconception to think that a g-factor 2 is a consequence of relativity; it is not. The factor 2 can be obtained from the linearization of both the Schrödinger equation and the relativistic Klein–Gordon equation (which leads to Dirac's).
In mathematical physics, the Dirac algebra is the Clifford algebra, ().This was introduced by the mathematical physicist P. A. M. Dirac in 1928 in developing the Dirac equation for spin- 1 / 2 particles with a matrix representation of the gamma matrices, which represent the generators of the algebra.