Search results
Results From The WOW.Com Content Network
This special line is the radical line of the two circles. Intersection of two circles with centers on the x-axis, their radical line is dark red. Special case = = = : In this case the origin is the center of the first circle and the second center lies on the x-axis (s. diagram).
First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.
In the other cases, the intersection of Q with the ombilic consists of two different pairs of complex conjugate points. As C is a curve of degree two, its intersection with the plane at infinity consists of two points, possibly equal. The curve C is thus a circle, if these two points are one of these two pairs of complex conjugate points on the ...
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
If the two points are not on a vertical line: Draw the radial line (half-circle) between the two given points as in the previous case. Construct a tangent to that line at the non-central point. Drop a perpendicular from the given center point to the x-axis. Find the intersection of these two lines to get the center of the model circle.
The intersection of two planes. The analytic determination of the intersection curve of two surfaces is easy only in simple cases; for example: a) the intersection of two planes, b) plane section of a quadric (sphere, cylinder, cone, etc.), c) intersection of two quadrics in special cases. For the general case, literature provides algorithms ...
Let A 1, A 2, B 1, B 2, C 1, C 2 be the six intersection points, with the same letter corresponding to the same line and the index 1 corresponding to the point closer to P. Let D be the point where the lines A 1 B 2 and A 2 B 1 intersect, Similarly E for the lines B 1 C 2 and B 2 C 1. Draw a line through D and E. This line meets the circle at ...
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .