Search results
Results From The WOW.Com Content Network
First we consider the intersection of two lines L 1 and L 2 in two-dimensional space, with line L 1 being defined by two distinct points (x 1, y 1) and (x 2, y 2), and line L 2 being defined by two distinct points (x 3, y 3) and (x 4, y 4). [2] The intersection P of line L 1 and L 2 can be defined using determinants.
The smallest-circle problem (also known as minimum covering circle problem, bounding circle problem, least bounding circle problem, smallest enclosing circle problem) is a computational geometry problem of computing the smallest circle that contains all of a given set of points in the Euclidean plane.
This special line is the radical line of the two circles. Intersection of two circles with centers on the x-axis, their radical line is dark red. Special case = = = : In this case the origin is the center of the first circle and the second center lies on the x-axis (s. diagram).
A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line ...
The distances between the centers of the nearer and farther circles, O 2 and O 1 and the point where the two outer tangents of the two circles intersect (homothetic center), S respectively can be found out using similarity as follows: Here, r can be r 1 or r 2 depending upon the need to find distances from the centers of the nearer or farther ...
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
Figure 9: The two tangent lines of the two tangent points of a given circle intersect on the radical axis R (red line) of the two solution circles (pink). The three points of intersection on R are the poles of the lines connecting the blue tangent points in each given circle (black). Gergonne's approach is to consider the solution circles in ...
The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.