Search results
Results From The WOW.Com Content Network
Shortest path (A, C, E, D, F) between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
Partition into cliques is the same problem as coloring the complement of the given graph. A related problem is to find a partition that is optimal terms of the number of edges between parts. [3]: GT11, GT12, GT13, GT14, GT15, GT16, ND14 Grundy number of a directed graph. [3]: GT56 Hamiltonian completion [3]: GT34 Hamiltonian path problem ...
In 2023, Haeupler, Rozhoň, Tětek, Hladík, and Tarjan (one of the inventors of the 1984 heap), proved that, for this sorting problem on a positively-weighted directed graph, a version of Dijkstra's algorithm with a special heap data structure has a runtime and number of comparisons that is within a constant factor of optimal among comparison ...
The directed graph realization problem is the problem of finding a directed graph with the degree sequence a given sequence of positive integer pairs. (Trailing pairs of zeros may be ignored since they are trivially realized by adding an appropriate number of isolated vertices to the directed graph.)
The first three stages of Johnson's algorithm are depicted in the illustration below. The graph on the left of the illustration has two negative edges, but no negative cycles. The center graph shows the new vertex q, a shortest path tree as computed by the Bellman–Ford algorithm with q as starting vertex, and the values h(v) computed at each other node as the length of the shortest path from ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Another related problem is the bottleneck travelling salesman problem: Find a Hamiltonian cycle in a weighted graph with the minimal weight of the weightiest edge. A real-world example is avoiding narrow streets with big buses. [15] The problem is of considerable practical importance, apart from evident transportation and logistics areas.
In this graph, the widest path from Maldon to Feering has bandwidth 29, and passes through Clacton, Tiptree, Harwich, and Blaxhall. In graph algorithms, the widest path problem is the problem of finding a path between two designated vertices in a weighted graph, maximizing the weight of the minimum-weight edge in the path.