When.com Web Search

  1. Ads

    related to: expectation of the square definition math problems grade 4

Search results

  1. Results From The WOW.Com Content Network
  2. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Any definition of expected value may be extended to define an expected value of a multidimensional random variable, i.e. a random vector X. It is defined component by component, as E[X] i = E[X i]. Similarly, one may define the expected value of a random matrix X with components X ij by E[X] ij = E[X ij].

  3. Expected mean squares - Wikipedia

    en.wikipedia.org/wiki/Expected_mean_squares

    In statistics, expected mean squares (EMS) are the expected values of certain statistics arising in partitions of sums of squares in the analysis of variance (ANOVA). They can be used for ascertaining which statistic should appear in the denominator in an F-test for testing a null hypothesis that a particular effect is absent.

  4. Mean square - Wikipedia

    en.wikipedia.org/wiki/Mean_square

    In mathematics and its applications, the mean square is normally defined as the arithmetic mean of the squares of a set of numbers or of a random variable. [ 1 ] It may also be defined as the arithmetic mean of the squares of the deviations between a set of numbers and a reference value (e.g., may be a mean or an assumed mean of the data), [ 2 ...

  5. Gambling mathematics - Wikipedia

    en.wikipedia.org/wiki/Gambling_mathematics

    The mathematics of gambling is a collection of probability applications encountered in games of chance and can get included in game theory.From a mathematical point of view, the games of chance are experiments generating various types of aleatory events, and it is possible to calculate by using the properties of probability on a finite space of possibilities.

  6. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    Similarly, if a submartingale and a martingale have equivalent expectations for a given time, the history of the submartingale tends to be bounded above by the history of the martingale. Roughly speaking, the prefix "sub-" is consistent because the current observation X n is less than (or equal to) the conditional expectation E[X n +1 | X 1 ...

  7. Law of total expectation - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_expectation

    The proposition in probability theory known as the law of total expectation, [1] the law of iterated expectations [2] (LIE), Adam's law, [3] the tower rule, [4] and the smoothing theorem, [5] among other names, states that if is a random variable whose expected value ⁡ is defined, and is any random variable on the same probability space, then