Ad
related to: how b cells recognize and respond to an antigen that causes the body to form
Search results
Results From The WOW.Com Content Network
The immune system may respond in multiple ways to an antigen; a key feature of this response is the production of antibodies by B cells (or B lymphocytes) involving an arm of the immune system known as humoral immunity. The antibodies are soluble and do not require direct cell-to-cell contact between the pathogen and the B-cell to function.
A fraction of the B cells with BCRs cognate to the antigen differentiate into memory B cells that survive long-term in the body. [12] The memory B cells can maintain their BCR expression and will be able to respond quickly upon secondary exposure. [6]
B cell activation: from immature B cell to plasma cell or memory B cell Basic B cell function: bind to an antigen, receive help from a cognate helper T cell, and differentiate into a plasma cell that secretes large numbers of antibodies. B cell activation occurs in the secondary lymphoid organs (SLOs), such as the spleen and lymph nodes. [1]
After the inflammatory immune response to danger-associated antigen, some of the antigen-specific T cells and B cells persist in the body and become long-living memory T and B cells. After the second encounter with the same antigen, they recognize the antigen and mount a faster and more robust response.
Such antigens by themselves are generally poor immunogens. Most complex protein antigens induce multiple B-cell clones during the immune response, thus, the response is polyclonal. Immune responses to non-protein antigens are generally poorly or enhanced by adjuvants and there is no system memory.
Each lineage of B cell expresses a different antibody, so the complete set of B cell antigen receptors represent all the antibodies that the body can manufacture. [57] When B or T cells encounter their related antigens they multiply and many "clones" of the cells are produced that target the same antigen. This is called clonal selection. [61]
The naive B lymphocyte expresses both surface IgM and IgD. The co-expression of both of these immunoglobulin isotypes renders the B cell ready to respond to antigen. [49] B cell activation follows engagement of the cell-bound antibody molecule with an antigen, causing the cell to divide and differentiate into an antibody-producing cell called a ...
The most common simplified overview description of the B cell differentiation pathway involves the following steps: an antigen interacts with the corresponding surface membrane immunoglobulin after which the B cell begins expressing receptors for growth factors secreted by T cells (BCGFs and IL-2), after these factors bind, the lymphocytes ...