When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    When an n × n rotation matrix Q, does not include a −1 eigenvalue, thus none of the planar rotations which it comprises are 180° rotations, then Q + I is an invertible matrix. Most rotation matrices fit this description, and for them it can be shown that (Q − I)(Q + I) −1 is a skew-symmetric matrix, A.

  4. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    While a rotation matrix is an orthogonal matrix = representing an element of () (the special orthogonal group), the differential of a rotation is a skew-symmetric matrix = in the tangent space (the special orthogonal Lie algebra), which is not itself a rotation matrix.

  6. Rotations in 4-dimensional Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Rotations_in_4-dimensional...

    into two skew-symmetric matrices A 1 and A 2 satisfying the properties A 1 A 2 = 0, A 1 3 = −A 1 and A 2 3 = −A 2, where ∓θ 1 i and ∓θ 2 i are the eigenvalues of A. Then, the 4D rotation matrices can be obtained from the skew-symmetric matrices A 1 and A 2 by Rodrigues' rotation formula and the Cayley formula. [9] Let A be a 4 × 4 ...

  7. Angular velocity tensor - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity_tensor

    In general, the angular velocity in an n-dimensional space is the time derivative of the angular displacement tensor, which is a second rank skew-symmetric tensor.. This tensor Ω will have n(n−1)/2 independent components, which is the dimension of the Lie algebra of the Lie group of rotations of an n-dimensional inner product space.

  8. Cayley transform - Wikipedia

    en.wikipedia.org/wiki/Cayley_transform

    Conversely, let Q be any orthogonal matrix which does not have −1 as an eigenvalue; then = (+) is a skew-symmetric matrix. (See also: Involution.) The condition on Q automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices.

  9. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    A bilinear form is symmetric (respectively skew-symmetric) if and only if its coordinate matrix (relative to any basis) is symmetric (respectively skew-symmetric). A bilinear form is alternating if and only if its coordinate matrix is skew-symmetric and the diagonal entries are all zero (which follows from skew-symmetry when char(K) ≠ 2).