When.com Web Search

  1. Ads

    related to: pythagorean triangle math calculator with sides and degrees equal to 2

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    The law of cosines generalizes the Pythagorean theorem, which holds only for right triangles: if γ is a right angle then cos γ = 0, and the law of cosines reduces to c 2 = a 2 + b 2. The law of cosines is useful for solving a triangle when all three sides or two sides and their included angle are given.

  5. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    If a is replaced with the fraction m/n in the sequence, the result is equal to the 'standard' triple generator (2mn, m 2 − n 2, m 2 + n 2) after rescaling. It follows that every triple has a corresponding rational a value which can be used to generate a similar triangle (one with the same three angles and with sides in the same proportions as ...

  6. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  7. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  8. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    Set square shaped as 45° - 45° - 90° triangle The side lengths of a 45° - 45° - 90° triangle 45° - 45° - 90° right triangle of hypotenuse length 1.. In plane geometry, dividing a square along its diagonal results in two isosceles right triangles, each with one right angle (90°, ⁠ π / 2 ⁠ radians) and two other congruent angles each measuring half of a right angle (45°, or ...

  9. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    There is a method to construct all Pythagorean triples that contain a given positive integer x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus. [13] The formulas read as follows.

  1. Ad

    related to: pythagorean triangle math calculator with sides and degrees equal to 2